Naturally occurring eccentric cleavage products of provitamin A β-carotene function as antagonists of retinoic acid receptors.

نویسندگان

  • Abdulkerim Eroglu
  • Damian P Hruszkewycz
  • Carlo dela Sena
  • Sureshbabu Narayanasamy
  • Ken M Riedl
  • Rachel E Kopec
  • Steven J Schwartz
  • Robert W Curley
  • Earl H Harrison
چکیده

β-Carotene is the major dietary source of provitamin A. Central cleavage of β-carotene catalyzed by β-carotene oxygenase 1 yields two molecules of retinaldehyde. Subsequent oxidation produces all-trans-retinoic acid (ATRA), which functions as a ligand for a family of nuclear transcription factors, the retinoic acid receptors (RARs). Eccentric cleavage of β-carotene at non-central double bonds is catalyzed by other enzymes and can also occur non-enzymatically. The products of these reactions are β-apocarotenals and β-apocarotenones, whose biological functions in mammals are unknown. We used reporter gene assays to show that none of the β-apocarotenoids significantly activated RARs. Importantly, however, β-apo-14'-carotenal, β-apo-14'-carotenoic acid, and β-apo-13-carotenone antagonized ATRA-induced transactivation of RARs. Competitive radioligand binding assays demonstrated that these putative RAR antagonists compete directly with retinoic acid for high affinity binding to purified receptors. Molecular modeling studies confirmed that β-apo-13-carotenone can interact directly with the ligand binding site of the retinoid receptors. β-Apo-13-carotenone and the β-apo-14'-carotenoids inhibited ATRA-induced expression of retinoid responsive genes in Hep G2 cells. Finally, we developed an LC/MS method and found 3-5 nm β-apo-13-carotenone was present in human plasma. These findings suggest that β-apocarotenoids function as naturally occurring retinoid antagonists. The antagonism of retinoid signaling by these metabolites may have implications for the activities of dietary β-carotene as a provitamin A and as a modulator of risk for cardiovascular disease and cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The formation, occurrence, and function of β-apocarotenoids: β-carotene metabolites that may modulate nuclear receptor signaling.

β-Carotene is the major dietary source of provitamin A. Central cleavage of β-carotene yields 2 molecules of retinal followed by further oxidation to retinoic acid. Eccentric cleavage of β-carotene occurs at double bonds other than the central double bond, and the products of these reactions are β-apocarotenals and β-apocarotenones. We reviewed recent developments in 3 areas: 1): the enzymatic ...

متن کامل

Carotenoid metabolism in mammals, including man: formation, occurrence, and function of apocarotenoids.

Vitamin A was recognized as an essential nutrient 100 years ago. In the 1930s, it became clear that dietary β-carotene was cleaved at its central double to yield vitamin A (retinal or β-apo-15'-carotenal). Thus a great deal of research has focused on the central cleavage of provitamin A carotenoids to form vitamin A (retinoids). The mechanisms of formation and the physiological role(s) of nonce...

متن کامل

Two carotenoid oxygenases contribute to mammalian provitamin A metabolism.

Mammalian genomes encode two provitamin A-converting enzymes as follows: the β-carotene-15,15'-oxygenase (BCO1) and the β-carotene-9',10'-oxygenase (BCO2). Symmetric cleavage by BCO1 yields retinoids (β-15'-apocarotenoids, C20), whereas eccentric cleavage by BCO2 produces long-chain (>C20) apocarotenoids. Here, we used genetic and biochemical approaches to clarify the contribution of these enzy...

متن کامل

Cardiac dysfunction in β-carotene-15,15'-dioxygenase-deficient mice is associated with altered retinoid and lipid metabolism.

Dietary carotenoids like β-carotene are converted within the body either to retinoid, via β-carotene-15,15'-dioxygenase (BCO1), or to β-apo-carotenoids, via β-carotene-9',10'-oxygenase 2. Some β-apo-carotenoids are potent antagonists of retinoic acid receptor (RAR)-mediated transcriptional regulation, which is required to ensure normal heart development and functions. We established liquid chro...

متن کامل

Families of retinoid dehydrogenases regulating vitamin A function: production of visual pigment and retinoic acid.

Vitamin A (retinol) and provitamin A (beta-carotene) are metabolized to specific retinoid derivatives which function in either vision or growth and development. The metabolite 11-cis-retinal functions in light absorption for vision in chordate and nonchordate animals, whereas all-trans-retinoic acid and 9-cis-retinoic acid function as ligands for nuclear retinoic acid receptors that regulate ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 287 19  شماره 

صفحات  -

تاریخ انتشار 2012